

SENSOR LASER

D 172

MANUAL DO USUÁRIO

www.decibel.com.br

ATENÇÃO

É de fundamental importância a <u>leitura completa deste manual</u>, <u>antes</u> de ser iniciada qualquer atividade no <u>manuseio do produto</u> aqui descrito.

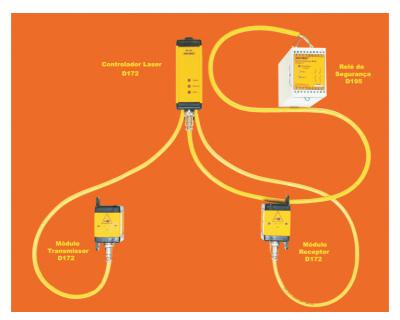
Este manual apresenta instruções de como utilizar o **Sensor Laser D172** fabricados pela **DECIBEL® Indústria e Comércio Ltda**.

É responsabilidade do comprador / usuário, utilizar os dispositivos acima citados, de acordo com as normas específicas de proteção adotadas e aplicadas no país de operação.

O usuário final do **Sensor Laser D172** deve certificar-se que todos os operadores da máquina, onde esses dispositivos forem instalados e o pessoal de manutenção e supervisores, estejam familiarizados e tenham entendido as instruções de uso e funcionamento do produto, isto envolve:

- · O conhecimento sobre o produto;
- A instalação;
- · A integração com o Sistema de acionamento da Máquina;
- · A adequação aos Requisitos de Segurança;
- · E a adequada aplicação do produto.

ÍNDICE


- 1.SENSOR LASER **D172**
- ·1.1. INTRODUÇÃO
- ·1.2. CARACTERÍSTICAS BÁSICAS
- ·1.3. DESCRIÇÃO DO FUNCIONAMENTO 1.3.1. SINALIZAÇÃO DE INVASÃO
- 2.SINALIZAÇÃO DOS ESTADOS DA OPERAÇÃO
- 3.ESPECIFICAÇÕES TÉCNICAS
- 4.INSTALAÇÃO
- ·4.1. TESTE FUNCIONAL PARA VALIDAÇÃO DA INSTALAÇÃO
 ·4.2. DIAGRAMA DE LIGAÇÃO
- 5.TESTE FUNCIONAL PARA VALIDAÇÃO DA INSTALAÇÃO
- 6.DIAGRAMA DE LIGAÇÃO
- 7.GARANTIA E ALTERAÇÕES
- 8.GLOSSÁRIO

1. SENSOR LASER **D172**

1.1. INTRODUÇÃO

O **Sensor Laser D172** é um dispositivo monofeixe de raio laser visível utilizado para monitorar Dobradeiras, Guilhotinas ou máquinas industriais similares, de modo a detectar a invasão de dedos ou mãos sob o punção durante a fase rápida de descida.

O **Sensor Laser D172** opera associado a um **Relé de Segurança D195** que funciona como uma interface de saída redundante com a máquina a ser protegida.

1.2. CARACTERÍSTICAS BÁSICAS

- ·Unidade de Controle Laser em um Invólucro de Alumínio 110 x 44 x 44 mm com sinalização incorporada através de 3 LEDs e tampas de acabamento e fixação;
- ·Módulo de Transmissão com 40 x 44 x 44 mm, contendo o Feixe Laser visível Vermelho, (Componente Classe 3R);
- ·Módulo de Recepção com 40 x 44 x 44 mm, contendo os circuitos correspondentes;
- ·Opera com 24 Volts dc.
- ·Possui dois microcontroladores em redundância.
- ·Efetua autoverificação de estado permanentemente.
- ·Tempo de resposta de 10 ms
- ·Capacidade de detecção 5 mm
- Atende aos requisitos da Categoria 4.

1.3. DESCRIÇÃO DO FUNCIONAMENTO

O Sensor Laser **D172** utiliza como interface com a máquina a ser protegida um Relé de segurança **D195** conforme o diagrama anexo.

Quando os módulos, Transmissor (TX) e Receptor (RX) do **Sensor Laser D172** são energizados é aceso um **LED Verde** no Controlador Laser, sinalizado a entrada de energia nos módulos.

Imediatamente se inicia o auto-teste dos circuitos internos para continuidade da operação. **Caso** seja detectada uma **falha** o **LED Vermelho** se acenderá, no Controlador.

O módulo TX emite o **feixe laser** que é **recebido** (e se alinhado com o orifício de recepção) no módulo RX, acenderá o **LED Amarelo** no Controlador, indicando que a sintonia está correta.

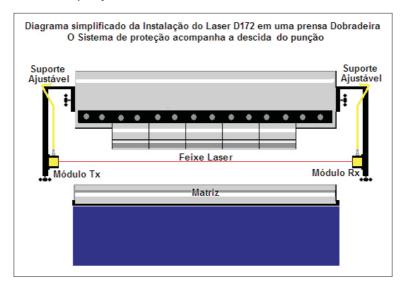
O Controlador Laser ao receber o sinal do módulo RX emite um **par de sinais diferenciais** (canais **P** e **N**) para o **Relé de Segurança D195**, que aciona os contatos de saída NA, fechando os circuitos que possibilitam a chegada de um comando de partida para a máquina sob proteção.

1.3.1. SINALIZAÇÃO DE INVASÃO

Quando o Sensor tem o seu feixe interrompido por uma invasão da área de risco ele apaga o LED Amarelo e simultaneamente corta ambos os sinais diferenciais (P e N) para a entrada do circuito do **Relé de Segurança D195**, desarmando-o e parando a máquina.

2. SINALIZAÇÃO DOS ESTADOS DA OPERAÇÃO

- ·O LED Verde acesos no Controlador Laser sinaliza a energização ligada.
- ·O **LED Amarelo** aceso sinaliza a correta sintonia do feixe laser.
- ·O **LED Amarelo** apagado sinaliza que ocorreu uma invasão.
- ·Um **LED Vermelho** aceso sinaliza **Falha Interna** no sistema de proteção.


3. ESPECIFICAÇÕES TÉCNICAS

Sensor Laser D172		
Tensão de operação	24 Volts dc.	
Consumo	250 mA.	
Proteção da Alimentação	Circuito de Proteção contra transientes e polaridade invertida.	
Configuração de Saída	Dois sinais diferenciais (P e N) para o Relé de Segurança D195 .	
Tempo de Resposta	10 milisegundos.	
Características elétricas Laser (25°C)	Comprimento de Onda Típico 655nm.	
	Potência de saída < 3 mW / Vcc 3 V.	
	Componente Classe 3R.	
	Diâmetro do feixe a 10m <10mm.	
	MTTF 2.5mW 25°C >10.000h.	
	LED Verde - Alimentação Elétrica (Ligado).	
Sinalização	LED Amarelo - Sinaliza o estado da sintonia.	
	LED Vermelho - Falha Interna.	
Construção	Invólucro de Alumínio 110x44x44 mm e 2x40x44x44 mm respectivamente, com tampas de acabamento e fixação.	
Classificação Ambiental	EC IP 54.	
Condições de Operação	Temperatura: 0° a 50 ° C; Umidade Relativa Máx: 90% a 50° C.	
Normas Aplicáveis	NBR 14153 - Categoria 4, IEC 60825-1:2007.	
Dimensões do Controlador Laser	119 x 44 x 44 mm (com 137 mm de distância entre furos).	
Dimensões dos módulos	63 x 44 x 44 mm (com 67 mm de distância entre furos).	

4. INSTALAÇÃO

De modo a otimizar e assegurar a correta instalação e alinhamento do **Sensor laser D172**, oriente-se pelas instruções a seguir:

- 1. Fixar os suportes articuláveis nas laterais da placa de descida que sustenta os punções), (para Set up rápido podem ser feitas adaptações em cada conjunto de punções);
- 2. Observe os ajustes de alinhamento e nivelamento, pela manopla interna e pelos 4 parafusos allen existentes nas extremidades da placa;
- 3. Faça a fixação dos **Módulos Sensores D172** e estabeleça a altura adequada em relação à borda dos punções;

- 4. Posicione e fixe a **Controladora do Laser D172** em um local, de fácil visualização dos LEDs sinalizadores da operação;
- 5. Posicione e fixe o Relé de Segurança **D195** no painel de comando da máquina.;
- 6.Conecte as quatro vias do cabo central da Controladora nos bornes do Relé de Segurança (vide o diagrama elétrico anexo neste manual);
- 7. Conecte os outros dois cabos da Controladora nos conectores dos módulos Tx e RX:

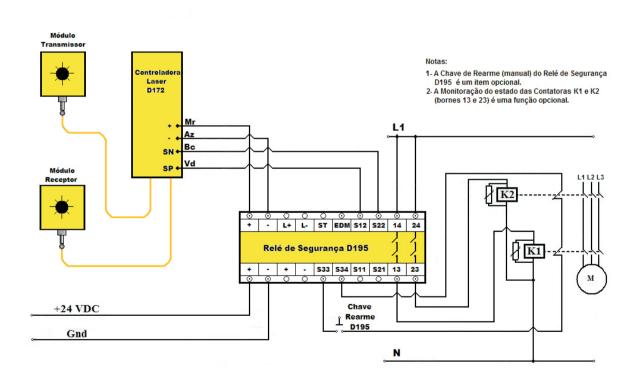
ATENÇÃO:

O cabo à esquerda da Controladora do Laser pertence ao Módulo Transmissor (Tx) e o cabo a direita ou Módulo Receptor (Rx).

8. Verifique se as ligações estão corretas, ligue a alimentação elétrica e inicie os testes a seguir.

5. TESTE FUNCIONAL PARA VALIDAÇÃO DA INSTALAÇÃO

- Verificar e assegurar que as ligações entre os módulos do Sensor laser D172 e o Relé de Segurança D195 estão corretas.
- 2. Ligar a alimentação elétrica.
- 3. Observar que o **LED Verde** de alimentação (Ligado), **acende**.
- 4.Imediatamente se inicia o **auto-teste dos circuitos internos** para continuidade da operação. (Caso seja detectada uma falha o LED Vermelho se acenderá).
- 5. Observar no controlador a recepção do **feixe laser** emitido e o acendimento do **LED Amarelo**, informando que a sintonia está correta.


ATENÇÃO

Não olhe diretamente no feixe laser emitido pelo módulo Transmissor (TX), ele pode causar graves danos ao olho humano.

6.Observar que o Relé de Segurança D195 sinalize os Leds Amarelos das Entradas 1 e 2 acusando o recebimento do par de sinais do sensor e preparando a ativação do circuito de partida da máquina, através dos circuitos redundantes de saída.

6. DIAGRAMA DE LIGAÇÃO

Diagrama elétrico do Sensor Laser D172 com interface do Relé de Segurança D195

ATENÇÃO MANUTENÇÃO DO SENSOR LASER **D172**

Não abra o produto ou mesmo tente fazer a sua manutenção.
Isto pode causar acidentes com sérias conseqüências.
Em caso de manutenção encaminhe o produto para a

ATENÇÃO

Em hipótese alguma utilize instrumentos ópticos para observar o feixe laser.

Isto pode causar acidentes com sérias consequências.

CUIDADO Interfaces nas saídas de segurança

Não utilize fiação paralela ou interligue dispositivos intermediários que possam de algum modo falhar e causar uma perda da função de segurança do comando de parada. Isto pode causar acidentes com ferimentos graves.

CUIDADO

O Sensor laser **D172** e o Relé de Segurança **D195** devem estar ligados na mesma rede de alimentação elétrica. Esta condição previne o surgimento de diferenças de potenciais, que podem causar falhas na operação do sistema.

7. GARANTIAS E ALTERAÇÕES

CERTIFICADO DE GARANTIA

A **DECIBEL**® garante este equipamento por 12 (doze) meses a contar da emissão da Nota Fiscal.

Esta garantia assegura ao adquirente a correção dos eventuais defeitos de fabricação, desde que sejam constatadas falhas em condições normais de uso do equipamento.

Não estão cobertas nesta garantia: carcaças e outras partes do produto que venham apresentar danos provocados por acidente, agentes da natureza, se utilizado em desacordo com o manual de instruções, se estiver ligado a sistema de alimentação imprópria, ou ainda, apresente sinais de ter sido violado, ajustado ou consertado por pessoa não credenciada pela **DECIBEL**®.

A **DECIBEL*** se reserva o direito de alterar parcial ou totalmente as características técnicas do **Sensor Laser D172**, qualquer que elas sejam; mecânicas, eletrônicas ou ópticas, bem como o conteúdo deste manual, a qualquer tempo sem prévio aviso.

A **DECIBEL*** assegura que as eventuais modificações introduzidas no **Sensor Laser D172** não alterarão as características de atendimento aos requisitos das Normas de Segurança que o regulamenta.

Versão:	N° do Pedido de Compra:
N° da Nota Fiscal:	N° de Série:

8. GLOSSÁRIO

Autoverificação - A Autoverificação em um dispositivo e Categoria 4 envolve assegurar que a qualquer tempo dentro do ciclo de operação do dispositivo sejam detectadas eventuais falhas na operação e o dispositivo tenha o seu funcionamento interrompido ainda dentro do respectivo ciclo de operação. Para isso o projeto deve prever recursos de autoteste e diagnóstico contínuo.

Condição de Falha - (Lockout Condition) - Condição de travamento ou parada de segurança – situação em que é detectado um problema de sistema, caracterizado por uma falta momentânea de energia ou uma eventual falha diagnosticada na autoverificação do sistema, o que indicaria uma perda da manutenção das condições de operação da máquina.

Dispositivo de segurança Categoria 4 (NBR 14153 seção 6) - É um dispositivo onde as partes relacionadas a segurança são projetadas de tal forma que um defeito isolado em qualquer dessas partes não leva à perda da função segurança (essa função é sempre cumprida). Ainda nesse caso, o defeito isolado é detectado durante e/ou antes da próxima demanda da função segurança. Se isso não for possível, o acúmulo de defeitos não pode levar a perda da função segurança (os defeitos são detectados a tempo de impedir a perda das funções de segurança).

Microcontrolador - É um componente programável, em um chip otimizado para controlar dispositivos eletrônicos. É uma espécie de microprocessador, com memória e interfaces de E/S(I/O) integrados, enfatizando a auto-suficiência, em contraste com um micro processador de propósito geral o qual requer chips adicionais para prover as funções necessárias.

NBR 14153 – Norma de Segurança de máquinas – Partes de sistemas de comando relacionadas à segurança – Princípios gerais para projeto.

Norma Brasileira editada pela ABNT- Associação Brasileira de Normas Técnicas, que tem por objetivo especificar os requisitos de segurança e estabelecer um guia sobre os princípios para projeto de partes de sistemas de comando relacionados a segurança. Utiliza como texto de referencia a Norma Européia EN 954 Safety of machinery – Safety related parts of control systems – Part 1; General principles for design.

Redundância - Configuração de um sistema ou parte dele em duplicidade para o atendimento de uma função de tal modo que uma falha na primeira configuração é cumprida pela segunda, e consecutivamente o sistema é retirado de operação para ter reconfigurada sua condição de redundância, só após a eliminação da falha.

Tempo de resposta - Está intimamente ligado ao tempo de parada da máquina para minimizar a possibilidade de acidente. Ele é o tempo medido entre um sinal de entrada e o corte do sinal de saída, que interrompe o circuito de alimentação para a máquina sob controle.